

BRIDGING EXEMPTION TEST SEMESTER I, SESSION 2020/2021

COURSE	:	PHYSICS
PROGRAMME	:	FACULTY FOUNDATION UTM (BRIDGING)
DURATION	:	1 HOUR 30 MINUTES
DATE	:	OCTOBER 2020

INSTRUCTIONS TO CANDIDATE:

- 1. Answer all the questions.
- 2. All answers must be written in the answer booklet provided. Use a new page for each question.
- 3. The full marks for each question or section are shown in the bracket at the end of the question.
- 4. All steps must be shown clearly.
- 5. Only non-programmable and non-graphing scientific calculators can be used.
- 6. Answers may be given in the form of π , *e*, surd, fractions, or up to four significant figures, where appropriate, unless stated otherwise in the question.
- 7. You are not permitted to take the exam paper and the answer booklet(s) out of the exam hall.

- a) You calculate 2.5 cm x 3.2 cm. You should write the result as 8 cm² or as 8.0 cm²? Justify your answer. [4 Marks]
- b) The sun is about 93 million miles from Earth. How many meters is that if 1 mile equals to 1609 meter? Write the answer using scientific notation.
 [4 Marks]
- c) Given vector A and B in terms of unit vector as $\vec{A} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\vec{B} = \hat{i} + \hat{2}\hat{j} + \hat{k}$. Determine the cross product of vector \vec{A} and \vec{B} . [4 Marks]
- d) A ball is thrown vertically downwards with initial velocity 14 ms⁻¹ from a height of 10 m building as shown in Figure 1. The velocity of the ball right before it strikes the ground is 20 ms⁻¹. Calculate the time taken to reach the ground. [4 Marks]

e) A projectile is launched at angle $\theta = 30^{\circ}$ from horizontal axis with initial speed of 20 m/s. Calculate the range of the projectile. [4 Marks]

2. (20 marks)

- a) Two-body system is shown in the following Figure 2. The 2 kg block which accelerates across a rough surface is attached by a string to a 4 kg object which is suspended over a pulley. The coefficient of kinetic friction is 0.20. [10 Marks]
 - i) Draw two free body diagrams
 - ii) Calculate the acceleration of the objects.

- b) Figure 3 shows a child with mass 22.5 kg going to play on a merry-go-round of radius, R = 1.20m that moves with a speed of v = 1.3 m/s. Calculate [10 Marks]
 - i) the centripetal acceleration of the child
 - ii) the net horizontal force exerted on the child

Figure 3

a) A box of mass 6.0 kg is accelerated from rest by a force across a smooth horizontal floor at a rate of 2.0 m/s² for 7.0 s as shown in Figure 4 below. [8 Marks]

Figure 4

- i) Calculate the net work done on the box.
- ii) Determine the final kinetic energy of the box.

- b) Particle A of mass $m_A = 200$ gmoving with velocity $v_A = 4$ m/s collides head-on with particle B of mass $m_B = 400$ g moving with velocity $v_B = 1$ m/s. After the collision, it is found that the velocity of particle B increases to 3 m/s. [12 Marks]
 - i) Calculate the velocity of particle A, v_A' after the collision.
 - ii) Is the collision elastic or inelastic? Explain why.

a) Figure 5 shows three particles with their respective masses and coordinates.

Determine the center of mass (CM) of the array of particles. [4 Marks]

b) Figure 6 shows a 23 kg boy sitting down at one end of a 9.0 m long seesaw, balanced by a 73 kg man. The seesaw is a uniform beam of mass 15 kg. Calculate the distance of the man from the pivot.[4 Marks]

- c) Given the density of water $\rho = 1000 \text{ kg m}^{-3}$ and the acceleration due to gravity $g = 9.80 \text{ m s}^{-2}$, calculate the pressure at the bottom of a water column 5 m high. [4 Marks]
- d) Figure 7(a) shows a beaker is initially filled up with water up to its overflow spout. A 120 g metal sphere, tied to a 7 g wooden block, is lowered slowly into the beaker. The displaced water flows out into an empty measuring cylinder, as in Figure 7(b). The volume of water collected is 13.5 cm³ when only the sphere is fully submerged, and 25.2 cm³ when both are fully submerged. [The density of water is 1000 kg m⁻³ or 1.0 g cm⁻³; g = 9.80 m s⁻²] **[8 Marks]**

a) i) State the Coulomb's law. [2 marks]

ii) Figure 8 shows an electron is orbiting a positively charged nucleus in a hydrogen atom. The radius of the orbit is 5.3×10^{-11} m, and the mass of electron is 9.1×10^{-31} kg. Calculate the orbital speed if the centripetal force is provided by the electrostatic pull on the electron. [2 marks]

b) Figure 9 shows a proton being held stationary between two parallel plates 7 mm apart, connected to a battery. The mass of the proton is 1.67×10^{-27} kg and its charge is 1.63×10^{-19} C. Calculate the voltage of the battery. **[6 Marks]**

- c) A 4.5 m long copper wire has a diameter of 1.5 mm. The resistivity of copper at room temperature of 25 °C is $1.68 \times 10^{-8} \Omega$ m. The temperature coefficient is 0.0068 °C⁻¹. Show that the resistance of the wire at room temperature is 42.8 m Ω . [4 Marks].
- d) Figure 10 shows a network of three resistors $R_1 = 10 \ \Omega, R_2 = 3.2 \ \Omega, R_3 = 30 \ \Omega$. The voltage between point A and B is kept at $V_{AB} = 12$ V. Calculate the current in each resistor. [6 Marks]

Figure 10

-THE END-