

BRIDGING EXEMPTION EXAMINATION SEMESTER I, SESSION 2020/2021

IFC 1024

PROGRAMME	:	FOUNDATION FACULTY UTM (BRIDGING)
DURATION	:	1 HOUR 30 MINUTES
DATE	:	OCTOBER 2020

INSTRUCTIONS TO CANDIDATE:

- 1. Do not open this question paper until you are told to do so.
- 2. Answer all questions.
- 3. All steps must be shown clearly.
- 4. Only non-programmable and non-graphing scientific calculators can be used.

This examination question consists of (6) printed pages including this page.

1

QUESTION 1 (16 MARKS)

- a) NaCl or sodium chloride is a metal halide composed of sodium and chloride with sodium and chloride replacement capabilities. When depleted in the human body, sodium must be replaced in order to maintain intracellular osmolarity, nerve conduction, muscle contraction and normal renal function. It is also known as an inorganic salt having Na⁺ as the counter ion. NaCl appears as a white crystalline solid. (NTP, 1992 & PubChem)
 - i. With respect to the Aufbau, Hund and Pauli exclusion principle, write the electron configuration and orbital diagram of atom Na and atom CI respectively

(4 marks)

- ii. Based on the electronegativity of Na (0.93) and Cl (3.16) atom :
 - 1) Describe the polarity of the NaCl compound using the trend in periodic table
 - 2) Suggest why NaCl is not a covalent bonding molecule

(2x2 marks)

 iii. In a biochemical assay, a chemist need to add 3.81 g of NaCl to a reaction mixture. Calculate the volume in millilitres of a 2.53 M NaCl solution she should use for the addition. State your answer in 3 significant figures.

(3 marks)

b) An amount of 0.5438 g sample of a liquid consisting of only C, H and O was burned in pure oxygen and 1.039 g of CO₂ and 0.6369 g of H₂O were obtained. Determine the empirical formula of the compound

(5 marks)

QUESTION 2 (17 MARKS)

a) The vapor pressure of pure water is 23.76 mmHg. If 100 g of sugar is dissolved in 500 g of water at 25°C, what is the vapor pressure of the solution [FW_{sugar}= 342]

(4 marks)

b) Calculate ΔH for the reaction: $N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(l)$

Given the following data:

$2 \operatorname{NH}_3(g) + 3 \operatorname{N}_2\mathrm{O}(g) \rightarrow 4 \operatorname{N}_2(g) + 3 \operatorname{H}_2\mathrm{O}(l)$	$\Delta H = -1010 \text{ kJ}$
$N_2O(g) + 3 H_2(g) \rightarrow N_2H_4(l) + H_2O(l)$	$\Delta H = -317 \text{ kJ}$
$2 \operatorname{NH}_3(g) + {}^{\downarrow_2} \operatorname{O}_2(g) \rightarrow \operatorname{N}_2\operatorname{H}_4(l) + \operatorname{H}_2\operatorname{O}(l)$	$\Delta H = -143 \text{ kJ}$
$\mathrm{H}_{2}(g) + \mathrm{I}_{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2}\mathrm{O}(l)$	$\Delta H = -286 \text{ kJ}$
	(9 marks)

c) The smog constituent of peroxyacetyl nitrate (PAN) dissociates into peroxyacetyl radicals and NO₂ (g) in a second order reaction with a half-life of 32 min. If the initial concentration of PAN in an air sample is 8.3×10^{-10} mol/L, what will be the concentration 1.50h later?

PAN \rightarrow peroxyacetyl radical + NO₂

(4 marks)

QUESTION 3 (17 MARKS)

- a) Answer the following questions
 - i. When 1.0 mol of hydrogen iodide was heated to 460° C in a 1.0 dm³ contained 0.78 mol of hydrogen iodide remained at equilibrium. Calculate the K_C for the following equilibrium.

(3 marks)

(2 marks)

A mixture of 1.0 mol of hydrogen and 2.0 mol of iodine, in a vessel of 1.0 dm³ capacity, was allowed to achieve equilibrium at 460°C. Calculate the composition of the equilibrium mixture.

$$2HI(g) \leftrightarrow H_2(g)I_2(g)$$

(6 marks)

b) Boric acid dissolves in water according to the equation:

 $B(OH)_3(aq) + H_2O(aq) \leftrightarrow B(OH)_4(aq) + H^+(aq)$

Explain this reaction in terms of Lewis's theory of acid/base

c) Identify and name all the functional groups in the following compound

(6 marks)

IFC 1024

LIST OF SELECTED CONSTANT VALUES

Ionisation constant for water at 25°C	$K_{ m w}$	-	$1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
Molar volume of gases	$V_{\rm m}$	=	22.4 dm ³ mol ⁻¹ at STP
			24 dm ³ mol ⁻¹ at RT
Speed of light in a vacuum	С	=	$3.0 \times 10^8 \text{ m s}^{-1}$
Avogadro's number	$N_{\rm A}$	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
Faraday constant	F	=	$9.65 \times 10^4 \text{ C mol}^{-1}$
Planck constant	h	=	$6.6256 \times 10^{-34} \text{ J s}$
Reduced Planck constant	ħ	=	$1.054 \times 10^{-34} \text{ J s}$
Rydberg constant	$R_{\rm H}$	=	$1.097 \times 10^7 \text{ m}^{-1}$
		=	$2.18 \times 10^{-18} \text{ J}$
Molar of gases constant	R	=	8.314 J K ⁻¹ mol ⁻¹
		= /	0.08206 L atm mol ⁻¹ K ⁻¹
Boltzmann constant	k	- ¥ \	1.3807×10 ⁻²³ J K ⁻¹
Mass of proton	Mp	=	1.672×10 ⁻²⁷ kg
Electronic Bohr magneton	μ_{E}	=	9.2741×10 ⁻²⁴ J T ⁻¹
Nuclear Bohr magneton	BN	\rightarrow	$5.05 \times 10^{-27} \text{J T}^{-1}$
Vapour pressure of water	Pwater	/=	23.8 torr
Electron charge	e-	=	1.602×10^{-19} C

UNIT AND CONVERSION FACTOR

Energy	1J =1	$kg m^2 s^{-2} = 1 N m = 10^7 erg$	\$
	1 calorie =	4.184 Joule	
	$1 \mathrm{eV} = 1$	$602 \times 10^{-19} \text{ J}$	
	1 amu = 1.6	$6 \times 10^{-27} kg$	
L (Y		
Pressure	1 atm = 76	50 mm Hg ⁼ 760 torr ⁼ 101.3	25 kPa ⁼ 101325 N m ⁻²
)	SELECTED FORMULAS	
1	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\Pi = MRT$	$4r = a\sqrt{2}$
ļ	$V_{1} = \frac{V_{2}}{V_{1}}$	$\frac{1}{2} = R\left(\frac{1}{2} - \frac{1}{2}\right)$	$rate = \sqrt{\frac{1}{1}}$
,	$n_1 n_2$	$\lambda (n_1^2 n_2^2)$	V density

THE PERIODIC TABLE

ſ	He 4.002602	10 Ne 20.1797	18 Ar 39.948	36 K	83.80	54 Xe	86	Rn	(222)	118	(293)
-		9 F 18.9984032	17 CI 35.4527	35 Br	79.504	53 1	85	At	(210)		
		8 0 15.9994	16 S 32.066	³⁴ Se	78.96	52 Te	84	Po	(209)	116	(289)
		7 N 14.00674	15 P 30.973761	33 AS	74.92160	51 Sb 131 760	83	Bi	208.58038		
		C 12.0107	14 Si 28.0855	³² Ge	72.61	50 Sn	82	Pb	207.2	114	(289) (287)
		5 B 10.811	13 AI 26.581538	31 Ga	69.723	49 1 1 11818	81	Ц	204.3833		
				uZ 08	65.39		80	Hg	200.59	112	(277)
				²⁹ Cu	63.545	47 Ag	62	Au	196.56655	111	(272)
				28 Ni	58.6534	94 Pd	78	Pt	195.078	110	(269)
				27 Co	58.933200	⁴⁵ Rh	77	lr	192.217	109	Mt (266)
				²⁶ Fe	55.845	44 Ru	76	Os	190.23	108	HS (265)
				25 Mn	54.938049	43 TC	75	Re	186.207	107	Bh (262)
				24 Cr	51.9961	42 Mo	74	\geq	183.84	106	Sg
				23 V	50.9415	41 Nb 01 00638	73	Ta	180.94.79	105	Db (262)
				72 Ti	47.867	40 Zr	72	Ηf	178.49	104	Rt (261)
				SC SC	44.955910	39 Y	57	La	138.9055	89	AC (227)
_		4 Be 9.012182	12 Mg ^{24.3050}	Ca Ca	40.078	38 Sr	56	Ba	137.327	88	Ra (226)
÷	H 1.00794	3 Li 6.941	11 Na 22.989770	1 9	39.0983	37 Rb 85 A670	55	S	132.90545	87	Fr (223)

				-
⁷¹	174.967	103	Ļ	(262)
⁷⁰	173.04	102	No	(259)
Tm	168.93421	101	рМ	(258)
Er Er	167.26	100	En	(257)
67 Ho	164.93032	66	Es	(252)
Dy Dy	162.50	98	£	(251)
65 Tb	158.92534	67	BK	(247)
64 Gd	157.25	96	С С	(247)
Eu Eu	151.964	95	Am	(243)
Sm 5	150.36	94	Pu	(244)
Pm	(145)	93	dN	(237)
Nd	144.24	92		238.0289
59 Pr	140.50765	16	Ра	231.035888
Ce 28	140.116	06	Th	232.0381

IFC 1024