Module: Chemistry

SUa

SUTM

O UTM

TM OUTM

BUTN

UTM OUIM OYAM **QUESTION 1 (15 MARKS)**

With respect to the Aufbau, Hund and Pauli exclusion principle, write the electron OUTM configuration and orbital diagram of

- the carbon atom in the gaseous state. i.
- the metal ion, M^{2+} in the ground state. The metal M has the proton number of 29. ii

SUTN SUIM SYAM

An atom can be ionised when it is bombarded with light of suitable wavelength. When sodium atoms are bombarded with light of wavelength of 242 nm, they are ionised to form sodium ions. Calculate the ionisation energy of sodium in kJ mol^{-1} .

(3 marks)

(2+2 marks)

TIM

c) The relative atomic mass of silicon is 28.09. Naturally occurring silicon consists of three isotopes, silicon-28. silicon-29 and silicon 20 to the three isotopes, silicon-28, silicon-29 and silicon-30. If the isotopic abundance of silicon-29 is 4.7%, what is the isotopic abundance of silicon-28?

(3 marks)

SUTM SUTM SUTM

SUTM SUTM SUTM

OUTM OUTM OUTM

TUTM

10 mL of a gaseous hydrocarbon $C_x H_y$ combined with 50 mL of oxygen to produce 30 d) mL of carbon dioxide. Determine the molecular formula of the hydrocarbon (All SUTM SUT(5 marks) volumes are measured under the same temperature and pressure) SUTM SUTM

SUTM SUTM

OUTM OUTM OUTM

OUTM OUTM OUTM

UTM OUIM OYAA **QUESTION 2 (15 MARKS)**

TM OVAN

TM OUTM A 1.50 dm³ sample of a mixture of ethane gas, C_2H_6 and oxygen gas, measured at 25 °C and 101 kPa, was allowed to react in a bomb calorimeter in which, had a heat capacity of 5.03 kJ/K altogether with its contents. The complete combustion of the ethane gas to carbon dioxide gas and water caused a temperature rise in the calorimeter of 6.18 K. Given that ΔH°_{c} (C₂H₆) is -1560 kJ/mol.

- Knowing the ΔH°_{c} of ethane, calculate the number of mole of ethane in the mixture. 8 UTM ii.
 - Calculate the total moles of gases in the calorimeter. 111.

(1+3+2 marks)

OUTH OUTH O'YAA

b) Butane is a hydrocarbon gas that commonly used for cooking. The standard enthalpy of combustion of butane is -220 1 kI/mol 10 c of butane combustion of butane is -220.1 kJ/mol. 10 g of butane is used to heat 8 L of water. Assuming that no heat is lost to the surroundings, what is the increase in the water's temperature? Given that the specific heat capacity of water is, $s(H_2O) = 4.18 \text{ J/g.}^{\circ}C$ and water density is 1g/L.

(5 marks)

SUOM Given the following data, determine the enthalpy change for the formation of 40 g of methane, CH₄.

 $C(s) + 2 H_2(g) \Box CH_4(g)$ CH₄(g) + 2 O₂(g) $\Box CO_2(g) + 2 H_2O(l)$ $\Delta H_c^o = -890.3 \text{ kJ/mol}$ $\Delta H_f^o = -393.5 \text{ kJ/mol}$ $\Delta H^o = -5.6 \text{ kJ/mol}$ $C(s) + O_2(g) \square CO_2(g)$ SUTM 8 UTM $\Delta H_{f}^{o} = -285.8 \text{ kJ/mol}$ $H_{2}(g) + \frac{1}{2}O_{2}(g) \Box H_{2}O(l)$ SUTM SUT(4 marks) SUTM SUTM OUTM OUTM OUTM SUTM SUTM SUTM SUTM OUTM OUTM OUTM OUTM OUTM OUTM TM OUTM BUTN TUTM TUTM

UTM OUIM OYAA **QUESTION 3 (20 MARKS)**

SUIM

OUa

TM OUTM

BUTM

Consider the following reaction:

 $CH_3Br(aq) + OH^{-}(aq) \rightarrow CH_3OH(aq) + Br(aq)$ The rate law for this reaction is first order in CH₃Br and first order in OH⁻. When $[CH_3Br]$ is 5.0 X 10⁻³ M and $[OH^-]$ is 0.120 M, the reaction rate at 303 K is 0.256 M/s. OUTM

- SUTM Calculate the rate constant
 - Determine the unit of the rate constant <u>ii</u>.
- OUTM OUTM The gas phase decomposition of NO₂, 2 NO₂(g) \rightarrow 2 NO (g) + O₂(g), is studied at b) °C, giving the following data: TM SUTM

	4	IN TH
	Time (s)	[NO ₂] (M)
	0.0	0.100
	5.0	0.017
a	10.0	0.0090
0	15.0	0.0062
	20.0	0.0047
		TLES

Determine the order of the reaction by using the mathematical method. i.

Calculate the half-life of the reaction. ii.

Do you expect the second half-life of the reaction to have the same value as the iii. first one? Briefly explain your reasoning.

> OUTM OUTM (4+1+2 marks)

> > TUTM

(2+1 marks)

SULW SULW OFT

Nitric oxide (NO) reacts readily with chlorine gas as follows:

 $2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$

Given pressures of nitric oxide (NO) is 0.16 atm, chlorine (Cl₂) is 0.23 atm and NOCl is UTM SUTM 0.56 atm.

- Determine the equilibrium constant, K_p, of the reaction. i.
- At 43 °C temperature, calculate the K_c of the reaction. ii.
- Determine the K_c for the reaction 5 NOCl (g) \rightarrow 5 NO (g) + 5/2 Cl₂ (g) iii. (2+2+2 marks)

SUd)M Aurumn (III) chloride, (AuCl₃), has a solubility of 54 g/100 mL of water. Determine the OUTM OU(4 marks) solubility-product constant, K_{sp}, of AuCl₃ in water. OUTM OUT

UTM OUIM OF **QUESTION 4 (15 MARKS)**

TM OYAM

TM OUT

JUTN

TM OUTM

BUTM

When saltdissolves, it can form either acidic or basic salt solutions. Calcium chloride, CaCl₂ is a salt that is used to develop viscosity in polymers, food additives and preservatives, surfactants, and as a pH control in chemicals. On the other hand, sodium amide, NaNH₂ serves as a catalyst and a nucleophilic reagent in the industrial production of indigo dye.

- The aqueous salt solution of CaCl₂is neutral. Explain this statement using the salt dissociation equation in water.
- TM OUTMi. The aqueous salt solution of NaNH₂is basic. Explain this statement using the salt ii. dissociation equation in water.

(3+3 marks)

SULW SULW OFT

b) During Christmas, Santa Claus found a bottle of used vinegar in his kitchen. Its chemical formula is CH₃COOH also known as sasting in the second state of the sec chemical formula is CH₃COOH, also known as acetic acid. He wants to make a Caesar salad for his reindeer. In order to do that, you are requested to help Santa Claus to find the pH of the acetic acid in the 0.020 M solution. Given $Ka = 1.76 \times 10^{-5}$.

(5 marks)

SUTM SUTM SUTM

OUTM OUTM OUTM

TUTM

- (S)UTM Buffer solutions are used by the human body to maintain a constant pH for biochemical processes such as enzyme activity. In addition, buffer is used in baby shampoo and soap to maintain the pH, thereby preventing rashes on the baby. Given an ethanoic acid, CH₃COOH with Ka = 1.85×10^{-5} .
- Calculate the pH of a buffer solution containing 0.150 mol/L ethanoic acid and i. 0.150 mol/L sodium ethanoate using the Henderson-Hasselbalch equation. OUTM ii.
 - Give the proportion (ratio) for [CH₃COO-] : [CH₃COOH] with the same 5 (1+3 marks) concentration that we should mix to produce a buffer solution of pH 5.00.

OUTM OUTM OUTM

OUTM OUTM OUTM

UTM OUIM OVAN 20 M **QUESTION 5 (20 MARKS)**

QUIN

TM OUTM

OUT

TM OUTM

BUTM

Given the redox reaction equation below:

- $+ \operatorname{Zn}(s) \rightarrow \operatorname{MnO}_2(s) + \operatorname{Zn}^{2+}(aq)$ $MnO_4^-(aq)$
- Complete and balance the above equation in basic solution. i.
- ii. Calculate the standard potential produced from the above redox reaction.
- SUTM iii Write the Q_c expression for the above reaction

(5+2+1 marks)

UTM

M OUTM OUTM

OUTH OUTM O'YAA

b) Consider a concentration cell (voltaic cell) at temperature of 25°C. The setup consists of copper electrodes on both sides. One side is filled with 300 mL of 0.5 M copper sulfate, CuSO,

solution and the other side is 300 mL of 2.1 M CuSO solution.

- Identify which concentration of CuSO₄ should be on cathode and anode. Calculate the voltage produced by the cell. i.
- ii.

S UTM (1+4 marks)

- OUTM OUTM Consider 0.2 M of cobalt chloride, CoCl, in an electrolytic cell with graphite electrodes being c) used on both sides. SUTM
 - Write all the possible chemical equations that may occur on both anode and cathode.
 - ii. Based on your answer in c(i), identify the major product that will be formed at the anode and cathode.

If 2.2 A of current is applied on the cell for 30 minutes, calculate the mass of product iii.

OUTM OUTM OUTM formed at the cathode.

OUTM OUTM OUTM

TUTM

(2+2+3 marks)

OUTM OUTM OUTM

3 UTM

UTM OUIM OYAN **QUESTION 6 (15 MARKS)**

TM OYAM

TM OUTM

JUTM

SUTM

TM OUTM

TUTM

o Uam Anthracimycin is a new potential drug, derived from marine microorganism discovered in 2013. It is effective against anthrax and various other Gram-positive bacteria. Redraw the figure given below in your answer sheet and circle FOUR functional groups that you can find in the anthracimycin molecule.

Н

Ē. OH

CH

H₃C

iii.

iv.

H

Ĥ

OUTM

- TM OUTM SUTM SUTM Draw the structural formula for the following molecules : b) 1,2-dimethylcyclobutane i.
 - 2,2-dimethylpropane ii.

SUTM SU

- 1.4-hexadiene iii.
- toluene iv
- ortho-hydroxybenzoic acid V.
- methylcyclopropane vi.
- propanal vii.

i.

ii.

SUTM SUTM SUTM

CH₃

CH₂

OUTM OUTM OUTM

UTM OUTM

(4 marks)

TUTM

SUTM

(4 marks)

SULW SULW OFT

SUTM SUTM SUTM

c) Write the IUPAC name for the given molecules below :

OUTM OUTM OUTM

OUTM OUTM OUTM

A.C.	2 DIVE	The SUIL	Mon	2 DITTE	
The		8 UIM	SULTWA		
	SUTM		BUTM		
LIST OF SELECTED CONSTANT VALUES					
	Ionisation constant for wate	r at 25°C $K_w =$	$1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$	DUTM	
MT	Molar volume of gases	$V_m =$	22.4 dm ³ mol ⁻¹ at STP	0-	
	Speed of light in a vacuum	c =	$24 \text{ dm}^3 \text{ mol}^3 \text{ at R1}$ $3.0 \times 10^8 \text{ m s}^{-1}$		
	Avogadro's number	$N_A =$	$6.02 \times 10^{23} \text{ mol}^{-1}$		
	Faraday constant	F =	$9.65 \times 10^4 \text{ C mol}^{-1}$	M	
	Reduced Planck constant	h = h	0.0250×10^{-31} J s	3 UIIM	
TM	Rydberg constant	$R_H =$	$1.097 \times 10^{7} \text{ m}^{-1}$		
	MTTM	0	2.18×10^{-14} J		
	Molar of gases constant	<i>R</i> = =	8.314 J K ⁻¹ mol ⁻¹ 8.314 L kPa K ⁻¹ mol ⁻¹		
	MTT	TITT	0.08206 L atm mol ⁻¹ K ⁻¹	MTTT	
35	Boltzmann constant		$1.3807 \times 10^{-27} \text{ J K}^{-1}$	3 Draw	
LUI	Mass of proton Electronic Bohr magneton	BUTNI Mp =	1.672×10^{-27} kg 9 2741 × 10^{-27} J T^{-1}		
	Nuclear Bohr magneton	$\beta_N =$	$5.05 \times 10^{-27} \text{ J T}^{-1}$		
	Vapour pressure of water	$P_{water} =$	23.8 torr		
	Electron charge	e-	1.602×10^{-9} C	TITM	
MT	U D	UNIT AND CONVERSION	FACTOR	0	
Lin	Energy 1.1 \sim 1.07 \sim 1.07 \sim 1.07 \sim 1.1				
	1 calorie	= 4.184 Joule			
	1 eV	$= 1.602 \times 10^{-19} \text{ J}$		- 1	
	BUTM I amu	$= 1.66 \times 10^{-27} \text{ kg}$		DUTM	
MT	Pressure 1 atm	= 760 mm Hg = 760 torr =	$= 101.325 \text{ kPa} = 101325 \text{ N m}^{-2}$	0-	
	Lenn-	O.C.	TTM O		
	3 Ura	SELECTED FORMU	JLA OULA		
	$P_1 P_2$	$\pi = MRT$	$Ar - a_2\sqrt{2}$	Marrie	
-15	$\overline{T_1} = \overline{T_2}$	N SULL	$\pi r = u \sqrt{2}$	2017	
IM	$V_1 V_2$	SUTA (1 1)	TTM		
	$\overline{n_1} = \overline{n_2}$	$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$	$rate = \sqrt{\frac{1}{density}}$		
	0 2		(0) =		
	TITM	ITTM		TTTM	
MT	(b) 9	MIN O	MTT	0 2	
Lin	10	2 DIVE	N OULAN		
	JUTIM		JUTM		
	-16	-26		- Al	
	8 UTM	SUTM		SUTM	

IN OUL SUTM SUIM OYAM SULW SULW OF YOUR 17 He 18 10 20.18 10 10 10 11 18 Ar 39.95 13 10 10 18 131.29 86 87 86 87 131.29 86 88 SUTM 71 Lu 175.0 103 Lr (260) 70 102 102 No TM & UTM SUTM 69 101 101 Md 68 Er 167.3 100 Fm (257) 3 67 H0 99 99 ES TM & UTM 8 UTM 12 30 30 55.39 48 80 80 112.41 80 80 112.41 80 80 112.41 80 80 112 65 158.9 97 Bk 64 Gd 157.3 96 Cm (247) 28 Ni 46 46 46 Pd 78 Pd 195.1 110 110 DS TM OUTM 10 SUTM 9 VIIIB 27 27 45 45 45 45 102.91 102.91 102.01 109 109 109 109 63 Eu 152.0 95 Am (243) O UTM. 26 Fe 44 44 44 76 08 190.2 190.2 108 HB 62 62 62 94 94 94 94 (244) TM & UTM 7 VIIB 25 25 34.94 43 43 43 43 43 43 75 75 75 75 75 107 107 107 107 107 SUTM 6 VIB 24 24 24 24 25,94 42 74 74 183,9 106 Sg Sg 60 144.2 92 U 238.0 59 Pr 91 (231) TM OUTM SUTM 58 Ce 90 232.0 H 2 1.01 IIA 3 4 4 5.94 9.01 11 12 Be 99 24.31 99 24.31 99 24.31 99 24.31 87.62 88 88 89 Ra Ac (225) (227)
 I
 I
 I

 1
 1
 1

 1
 1
 1

 3
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 1
SUTM SUTM OUTM O TUTM TUTM TUTM

TM OYAM AD OTH OUTH OYAN OUTM OUIM OYAM STANDARD REDUCTION POTENTIAL ELECTROCHEMICAL SERIES TM OUTN BUTM SUTM Half-Reaction E (Volts) K⁺ + e⁻ ≓ K 1 -2.924 $Ba^{2+} + 2e^{-} \rightleftharpoons Ba$ -2.900 $Ca^{2+} + 2e^{-} \rightleftharpoons Ca$ -2.760TM & UTM SUTM $Na^+ + e^- \rightleftharpoons Na$ -2.712SUTM $Mq^{2+} + 2e^{-} \rightleftharpoons Mq$ -2.375 MTU $H_2 + 2e^- \rightleftharpoons 2 H_{-}$ -2.230 $AI^{3+} + 3e^{-} \Rightarrow AI$ -1.706 $Mn^{2+} + 2e^{-} \rightleftharpoons Mn$ -1.040 $Zn^{2+} + 2e^{-} \rightleftharpoons Zn$ -0.763TM OUTM $Cr^{3+} + 3e^{-} \rightleftharpoons Cr$ -0.740 $S + 2e^{-} \rightleftharpoons S^{2-}$ -0.5080 $2CO_2 + 2H^+ + 2e^+ \neq H_2C_2O_4$ -0.490 -0.410 $Cr^{3+} + e^{-} \rightleftharpoons Cr^{2+}$ $Fe^{2+} + 2e^{-} \rightleftharpoons Fe$ -0.409 $Co^{2+} + 2e^{-} \rightleftharpoons Co$ -0.280TM & UTM -0.126 UTM 3 UTM M $Ni^{2+} + 2e^{-} \rightleftharpoons Ni$ $Sn^{2+} + 2e^{-} \rightleftharpoons Sn$ $Pb^{2+} + 2e^{-} \rightleftharpoons Pb$ -0.036 Fe³⁺ + 3e ≓ Fe $2H^+ + 2e^- \rightleftharpoons H_2$ 0.000 TM & UTM $S_4O_6^{2-} + 2e^- \rightleftharpoons 2 S_2O_3^{2-}$ 0.340 UTM & UTM 0.089 $Sn^{4+} + 2e^{-} \rightleftharpoons Sn^{2+}$ $Cu^{2+} + e^{-} \rightleftharpoons Cu^{+}$ Cu²⁺ + 2e⁻ ⇒ Cu O2 + 2H2O + 4e- = 4OH-10.401 Cu⁺ + e⁻ ⇒ Cu 0.522 UTM SUTM SUTM $|_{3^{-}} + 2e^{-} \rightleftharpoons 3|_{-}$ 0.534 $MnO_4^- + 2H_2O + 3e^- \rightleftharpoons MnO_2 + 4OH^-$ 0.588 O₂ + 2H⁺ + 2e⁻ ≠ H₂O₂ 0.682 0.770 $Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$ SU-0.796 $Hg_2^{2+} + 2e^- \rightleftharpoons Hg$ SUTM SUTM OUTM OUTM OUTM $Cl_2 + 2e^- \rightleftharpoons 2Cl_2$ 1.360 TM & UTM TUTM TUTM TUTM